PART 5 Hydraulic properties of porous media

Porosity

Definition: \(n = \frac{V_{\text{void}}}{V_{\text{total}}} \) total porosity

Void space: \(e = \frac{V_{\text{void}}}{V_{\text{solid}}} \)

Primary porosity - between grains

Secondary porosity - fracture or solution porosity

Primary porosity

Uniform spheres - porosity constant, independent of particle size

Can have different packing:

Table 6. Different geometric arrangements of uniform cubic spheres.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3-5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

other configurations same as # 2, but in 3-D

cubic packing rhomboedral packing

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3-5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.476</td>
<td>0.476 > n > 0.259</td>
<td>0.476 > n > 0.259</td>
<td>n = 0.259</td>
</tr>
</tbody>
</table>

least compact most compact

Non-uniform grains will have lower porosity because small grains fill void spaces between larger clasts.

Spheres can form “stable bridges” -> porosity up to 0.7
Secondary porosity

Due to postdepositional processes, such as dissolution and re-precipitation, fracturing, etc.

Overhead from Carozzi: p. 11 and p. 25 (both on one page)

Mineral replacement, e.g.,

\[2\text{CaCO}_3 \rightarrow (\text{Ca,Mg})\text{CO}_3 \]

- calcite → dolomite
- 2.71 g/cm³ → 2.87 g/cm³
- 5.9% reduction of volume

Another example:

- gypsum → anhydrite
- 2.32 g/cm³ → 2.98 g/cm³
- 28% reduction of volume

Overhead from Carozzi, p. 141

Fractures - similar definition of porosity: \(V_{\text{void}}/V_{\text{total}} \)
Types of porosity

Total porosity - defined earlier; total pore space in a porous medium; total water content

\[n = \frac{\text{pore volume}}{\text{total volume}} \]

Effective porosity - interconnected pore space. Some water is in dead-end pores or otherwise captured and excluded from circulation.

\[n_e = \frac{\text{interconnected pore volume}}{\text{total volume}} \]

Kinematic porosity - mobile water in interconnected pore space.

\[n_e = \frac{\text{volume of water able to circulate}}{\text{total volume}} \]

From the point of view of fluid flow, adhesive water acts as solid. The volume of water that circulates is smaller than the water in interconnected pore space.

We can assume that the following is true:

total porosity > effective porosity > kinematic porosity

Kinematic implies fluid in motion, effective - not necessarily in motion. However, often, effective and kinematic porosities are considered equivalent.
Values of porosity

Table 7. Typical values of porosity and effective porosity for common geological materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Total porosity, % (mostly from deMarsily, 1986)</th>
<th>Effective porosity, % (from Domenico and Schwartz, 1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite, gneiss</td>
<td>0.02 - 1.8</td>
<td>0.0005</td>
</tr>
<tr>
<td>Basalt</td>
<td>3 - 35</td>
<td></td>
</tr>
<tr>
<td>Weathered granite</td>
<td>34 - 57</td>
<td></td>
</tr>
<tr>
<td>Volcanic tuff</td>
<td>30 - 40</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>15 - 48</td>
<td></td>
</tr>
<tr>
<td>Sandstone</td>
<td>4 - 38</td>
<td>0.5 - 10</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>44 - 53</td>
<td></td>
</tr>
<tr>
<td>Swelling clay</td>
<td>up to 90</td>
<td></td>
</tr>
<tr>
<td>Shale</td>
<td>0.5 - 7.5</td>
<td>0.5 - 5</td>
</tr>
<tr>
<td>Limestone (primary porosity)</td>
<td>0.5 - 12.5</td>
<td>0.1 - 5</td>
</tr>
<tr>
<td>Dolomite (secondary porosity)</td>
<td>10 - 30</td>
<td></td>
</tr>
</tbody>
</table>

In general terms, porosity and effective porosity are related as in the figure below:
Intrinsic permeability

Look again at total flux through our porous medium composed of tubes:

\[Q_T = \frac{-B \mu a^2}{8} \frac{\partial p}{\partial x} \]

We saw that effective (or kinematic) porosity affects \(Q_T \). A second, more important factor is tube diameter \(2a \), or grain diameter, which determines the intrinsic permeability of porous media.

Consider two cubes 10x10x10 mm with tubes of two sizes: (1) \(a=0.5 \) mm and (2) \(a=0.25 \) mm.

Porosity remains the same, at 0.785 (assuming that tube walls are very thin). Let \(\mu = 10^{-3} \) Pa s and \(\partial p/\partial x = 1 \). Calculate \(Q_T \):

\[Q_T = \frac{-B \mu a^2}{8} \frac{\partial p}{\partial x} = 9817.5a^2 \]

Cube 1: \(Q_T = 2454 \text{ mm}^3 \text{ s}^{-1} = 0.21 \text{ m}^3 \text{ d}^{-1} \)

Cube 1: \(Q_T = 614 \text{ mm}^3 \text{ s}^{-1} = 0.05 \text{ m}^3 \text{ d}^{-1} \)

For \(a=10^{-3} \) mm (clay fraction), \(Q_T = 0.00245 \text{ mm}^3 \text{ s}^{-1} \) (over area 1x1 cm)

Consider this flow rate on a scale of aquifer, say 10 m thick, per 1 m width of aquifer. The cross sectional area is 10 m², i.e., \(10^7 \) mm². \(Q_T = 245 \text{ mm}^3 \text{ s}^{-1} = 0.021 \text{ m}^3 \text{ d}^{-1} \). So, we need 47 days to supply 1 m³ of water.

Is this a good aquifer?
Hydraulic conductivity

In Darcy’s law, the proportionality constant K is called hydraulic conductivity (units: $L \ T^{-1}$). Graphically, it is the slope of the line in Darcy’s law:

What does the hydraulic conductivity depend on?

Recall flow through a tube. Discharge per unit area (specific discharge) is:

$$q = \frac{-a^2}{8\mu} \cdot \frac{\partial p}{\partial x}$$

and $p = \rho gh$

$$q = \frac{-a^2}{8\mu} \cdot \frac{\partial (\rho gh)}{\partial x} \quad \rho \text{ and } g = \text{const}$$

$$q = \frac{-a^2 \rho g}{8\mu} \cdot \frac{\partial h}{\partial x} \quad \rho \text{ and } g = \text{const}$$

so, by analogy with Darcy’s law ($q = -K \ \text{dh/dL}$)

$$K = \frac{a^2 \rho g}{8\mu} \quad \text{property of medium (1/8 and } a^2\text{) and fluid (} \rho \text{ and } \mu\text{)}$$

Dimension of K:

$$\frac{L^2 ML^{-3} L^2 T^{-2}}{ML^2 T^{-2} L^{-2} T} = LT^{-1} \quad \text{K has units of velocity}$$
Separate factors in K into two groups:

\[K = \frac{a^2 \rho g}{8 \mu} = \frac{a^2}{8} \frac{\rho g}{\mu} = k \frac{\rho g}{\mu} \]

Term \(a^2/8 \) (k, intrinsic permeability), is a function of the porous medium alone. In general, it is considered proportional to some characteristic length, e.g., grain size: \(k = cd^2 \), where \(c \) is a dimensionless proportionality constant that may be found experimentally, \(d \) is median grain size (\(d_{50} \)) or the tenth percentile (\(d_{10} \)) or some other length related to grain size.

Dimension of \(k \): \(L^2 \)

Common unit: \textbf{darcy} = \(10^{-8} \) cm\(^2\)

Typical values of hydraulic conductivity (m/s):

<table>
<thead>
<tr>
<th>Material</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>gravel</td>
<td>10(^{-3}) - 10(^1)</td>
</tr>
<tr>
<td>sand</td>
<td>10(^{-7}) - 10(^{-2})</td>
</tr>
<tr>
<td>sandstone</td>
<td>10(^{-10}) - 10(^{-5})</td>
</tr>
<tr>
<td>clay</td>
<td>10(^{-12}) - 10(^{-5})</td>
</tr>
<tr>
<td>karst limestone</td>
<td>10(^{-5}) - 10(^{-1})</td>
</tr>
<tr>
<td>crystalline rock</td>
<td>10(^{-13}) - 10(^{-10})</td>
</tr>
<tr>
<td>silt</td>
<td>10(^{-9}) - 10(^{-5})</td>
</tr>
</tbody>
</table>

\textbf{Study Table 2.2. in Freeze & Cherry: you should know the range of values of hydraulic conductivity (K) and intrinsic permeability (k) for different media}
Heterogeneity of hydraulic conductivity

Properties vary in space -> **heterogeneous**

Steady properties -> **homogeneous**

Examples of soil heterogeneity:
- clay lenses in sand formation
- fractures in crystalline rocks

Consider two laboratory columns: one is packed with the same soil, the other contains three soils with different hydraulic conductivities. We can deduce the distribution of hydraulic head from Darcy’s law \(q = -K \frac{dh}{dL} \), assuming that the discharge \(q \) is constant throughout the column.

Real aquifer examples: lenses of gravel (left panel) and clay (right panel) in uniform sand.

Water flows through more permeable localities.

Note, however, that it applies only in situations where water has a choice of direction, that is, where there are few constraints on the direction of flow. We will see later that water will flow from a sand layer into a clay layer.
Effective hydraulic conductivity

Consider two simple cases of flow in one dimension (1-D flow):

For flow parallel to layers, effective K is called \(K_h \) (for horizontal flow, because parallel flow is typically found in a horizontal layered sedimentary sequences).

\[
K_h = \frac{\sum_{i=1}^{n} K_i b_i}{\sum_{i=1}^{n} b_i}
\]

For flow normal to layers, effective K is called \(K_v \) (for vertical flow, because normal flow is typically vertical, across horizontal layers).

\[
K_v = \frac{\sum_{i=1}^{n} \frac{b_i}{K_i}}{\sum_{i=1}^{n} \frac{b_i}{K_i}}
\]

Effective hydraulic conductivity must preserve the flux Q (or q), but not the head.

In real aquifers, the flow is at an angle to the bedding (layering) and the best effective hydraulic conductivity is calculated as geometric mean: \(K_G = \) ?

In a layered formation, effective K is different in horizontal and vertical directions. By using this averaging process, we replace many isotropic units with a single anisotropic medium.
Anisotropy of hydraulic conductivity

Anisotropic properties of aquifers can be described by giving K values in all directions. Consider an anisotropic medium in which flow q_s is along direction s.

Flux q_s can be decomposed into its components q_x and q_z along axes x and z:

$$q_x = q_s \cos \alpha = -K_x \frac{\partial h}{\partial x}$$

$$q_z = q_s \sin \alpha = -K_z \frac{\partial h}{\partial z}$$

In the expressions above, K_x and K_z are hydraulic conductivities in the x and z directions.

The flux along the direction s is: $q_s = -K_s \frac{\partial h}{\partial s}$

Look at term $\frac{\partial h}{\partial s}$ using the chain rule:

$$\frac{\partial h}{\partial s} = \frac{\partial h}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial h}{\partial z} \frac{\partial z}{\partial s}$$

but we know that

$$\frac{\partial x}{\partial s} = \cos \alpha \quad \text{and} \quad \frac{\partial z}{\partial s} = \sin \alpha$$

that

$$\frac{\partial h}{\partial s} = -\frac{q_s}{K_s} \quad \frac{\partial h}{\partial x} = -\frac{q_s}{K_x} \quad \text{and} \quad \frac{\partial h}{\partial z} = -\frac{q_s}{K_z}$$

and that

$$-\frac{q_s}{K_s} = -\frac{q_s}{K_x} \cos \alpha - \frac{q_s}{K_z} \sin \alpha$$

Because $q_x = q_s \cos \alpha$ and $q_z = q_s \sin \alpha$, we get:

$$-\frac{q_s}{K_s} = -\frac{q_s}{K_x} (\cos \alpha)^2 - \frac{q_s}{K_z} (\sin \alpha)^2$$
Simplifying, we get:
\[\frac{1}{K_s} = \frac{(\cos \alpha)^2}{K_x} + \frac{(\sin \alpha)^2}{K_z} \]

or, substituting \(x = r \cos \alpha \) and \(z = r \sin \alpha \)

\[\frac{r^2}{K_s} = \frac{x^2}{K_x} + \frac{z^2}{K_z} \]

Given \(K_x \) and \(K_z \), we can use this formula to calculate \(K_s \) in any direction determined by angle \(\alpha \).

Graphically, these \(K \) values are related as follows (thick red lines):

In Cartesian coordinate system, in 3-D, it is an “ellipsoid”:

\[\frac{r^2}{K_s} = \frac{x^2}{K_x} + \frac{y^2}{K_y} + \frac{z^2}{K_z} \]

Major axes are: \(\sqrt{K_x}, \sqrt{K_y} \) and \(\sqrt{K_z} \).
Boundaries between layers

If flow is not parallel to layers and not normal, we observe refraction of flow lines because of anisotropy.

In the system above, K_1 is much greater than K_2. This contrast controls refraction of flow lines: the greater the contrast between K values, the stronger the refraction. We will develop this relation quantitatively.

Consider a boundary between two porous media

From Darcy’s law, we calculate fluxes (per unit thickness):

$$Q_1 = -K_1 \frac{h_C - h_A}{|BC|} |AB|$$

$$Q_2 = -K_2 \frac{h_C - h_B}{|CD|} |CD|$$

where absolute values represent lengths (for example, $|AB|$ is the distance from A to B).
Because the flow is constant (or steady state), the fluxes must be equal, $Q_1 = Q_2$

$$-K_1 \frac{h_C - h_d}{|BC|} |AB| = -K_2 \frac{h_C - h_d}{|AD|} |CD|$$

$$\frac{-K_1}{|BC|} |AB| = \frac{-K_2}{|AD|} |CD|$$

$$\frac{K_1}{K_2} = \frac{|BC| |CD|}{|AD| |AB|} \frac{\tan \alpha}{\tan \beta}$$

Tangent law for refraction of groundwater flow lines at geologic boundaries

Example

* If $K_2 \gg K_1$, then $\tan \beta \gg \tan \alpha$, and $\beta \to 90^\circ$, i.e., flow is nearly parallel to the boundary

* If $K_2 \ll K_1$, then $\tan \beta \ll \tan \alpha$, and $\beta \to 0^\circ$, i.e., flow is nearly normal to the boundary
Heterogeneity and anisotropy

Scalar properties:
Homogeneity - property is constant in space
Heterogeneity - property varies in space

Vector properties (tensor):
Isotropy - property invariant with direction
Anisotropy - property varies with direction

There are four possible combinations of heterogeneity and anisotropy:
Influence of K on the direction of flow

(1) Homogeneous and isotropic aquifer

The direction of specific discharge \vec{q} is normal to equipotentials (lines of equal potential or equal head).

Vectors of head gradient \vec{J} and discharge \vec{q} are in the same direction.

(2) Homogeneous and anisotropic

Vector \vec{J} is as before, but the direction of \vec{q} is somewhere between \vec{J} and the direction of layering (here also the path of least resistance).

Examples
Hydraulic conductivity tensor

Hydraulic conductivity has directional properties. It is described by second order symmetric tensor (\mathbf{K} with double overbar; twin overbar denotes tensor):

$$\mathbf{K} = \begin{bmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz} \end{bmatrix}$$

where entry K_{ij} is the specific discharge in the i direction due to a unit gradient in the j direction.

Anisotropy is a matter of scale: small scale \rightarrow isotropic; aquifer scale \rightarrow anisotropic.

In two dimensions (here, x and y), the hydraulic conductivity tensor is:

$$\mathbf{K}_{xy} = \begin{bmatrix} K_{xx} & K_{xy} \\ K_{yx} & K_{yy} \end{bmatrix}$$

Example:

The hydraulic conductivity is described by tensor:

$$\mathbf{K}_{xy} = \begin{bmatrix} K_{xx} & K_{xy} \\ K_{yx} & K_{yy} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.1 \\ 0.1 & 0.3 \end{bmatrix} \text{ m d}^{-1}$$

which means the following:

1. under unit gradient in the x direction, the specific discharge in the x direction is 0.5 (K_{xx})
2. under unit gradient in the y direction, the specific discharge in the x direction is 0.1 (K_{xy})
3. under unit gradient in the x direction, the specific discharge in the y direction is 0.1 (K_{yx})
4. under unit gradient in the y direction, the specific discharge in the y direction is 0.3 (K_{yy})
Description of soil heterogeneity

Look at the example of the distribution of hydraulic conductivity shown in the figure (to the right). Observe that high values of K are accompanied by other high values, and low values by other lows. We say that similar values of K are clustered together, i.e., that K is spatially correlated.

What are possible reasons for such a structure?

Look at the figure below.

Go back to homework problem in which we looked at hydraulic conductivity in a core. Look at assumptions that we made about K outside the core. We assume that K outside the core is the same as in the core. Is this a valid assumption? Look at the figure to the right.

Questions:

1. Is effective K really that effective?
2. Can we calculate the same effective K for two completely different systems?
3. What is missing in our effective K calculations?
Two ways to describe heterogeneity

<table>
<thead>
<tr>
<th>(1) Deterministic</th>
<th>(2) Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective K in different directions.</td>
<td>Looks at spatial statistical structure of K values.</td>
</tr>
<tr>
<td>Does not take into account correlation between K values.</td>
<td>Let us predict the K value at location (x+1) given the K value at location x. We can assign some probability to our prediction.</td>
</tr>
<tr>
<td>The two systems below would produce the same effective K.</td>
<td>Gain over deterministic way: we look at values of K and the way these values change in space.</td>
</tr>
</tbody>
</table>

Correlation scale - distance over which values of K are strongly correlated.

Covariance - determines the structure of the spatial changes of K. It is a function of distance (d) between two points of measurements (see figure below).

\[R(d) = \text{covariance} \]

\[d = \text{distance} \]

Computational formula for R:

\[R = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (x_{ij} - \bar{x}_j) \cdot (x_{ik} - \bar{x}_k) \]

where N is the number of pairs, x is the value and \(\bar{x} \) is the average value.