TIMING OF LATE QUATERNARY EARTHQUAKES ON THE HEBGEN LAKE FAULT BY COSMOGENIC CHLORINE-36 DATING OF BEDROCK FAULT SCARP

ZREDA, Marek, Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, marek@hwr.arizona.edu; NOLLER, Jay S., Department of Geology, Vanderbilt University, Nashville, TN 37235.

Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes at Hebgen Lake. The technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation.

Twenty-seven samples collected every 0.5 m from the bottom (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 ky (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, with period of 15-20 kyr, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.

![Graph showing cosmogenic 36Cl age vs. displacement](image_url)

cosmogenic-36Cl, exposure-dating, paleoearthquakes, fault-scarps, Hebgen-Lake

Geological Society of America, 51st Annual Meeting, Rocky Mountain Section
April 8-10, 1999, Pocatello, Idaho.
Presentation outline

(1) Title [original graphics]
(2) Goal [original graphics]

Approach and methods
(3) Production and accumulation of 36Cl [original graphics]
(4) Corrections [original graphics]
(5) Subsurface distribution of cosmic rays [original graphics]
(6) Episodic exposure of scarp [original graphics]
(7) Episodic exposure of fault scarp [original graphics]

Location and samples
(8) Hebgen Lake map [original graphics]
(9) Hebgen scarp [original slide]
(10) Hebgen scarp [original slide]
(11) Hebgen scarp [original slide]
(12) Hebgen scarp [original slide]

Results and discussion
(13) Apparent 36Cl ages [original graph]
(14) Corrected 36Cl ages [table]
(15) Corrected 36Cl ages [original graph]
(16) Clustering [original graph]
(17) Vertical slip rates [table]

Conclusions
(18) Validity of dating approach [text]
(19) Advantages [text]
(20) Conclusions [text]
Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes at Hebgen Lake. The technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation. Twenty-seven samples collected every 0.5 m from the bottom (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 ky (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, with period of 15-20 kyr, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.
Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes at Hebgen Lake. The technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation. Twenty-seven samples collected every 0.5 m from the bottom (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 ky (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, with period of 15-20 kyr, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.
Production and accumulation of 36Cl

neutron activation:
35Cl (n,γ) 36Cl

spallation:
39K (n, 2n2p) 36Cl
40Ca (n, 2n3p) 36Cl

negative muon capture:
40Ca (μ⁻, α) 36Cl

$$\frac{P}{\lambda}(1 - e^{-\lambda t})$$

Time

36 Cl/Cl

Marek Zreda, 1999
Corrections

Global:

Latitude

Elevation

Local:

Topographic shielding

Subsurface production

Apparent \(^{36}\text{Cl}\) ages

Corrected \(^{36}\text{Cl}\) ages

Marek Zreda, 1999
Subsurface distribution of cosmic rays

- Slow muons
- Thermal neutrons
- Fast neutrons

Relative production rate vs. Depth, g cm\(^{-2}\)
Episodic exposure of scarp

Prior to faulting
Slow buildup of cosmogenic
36Cl below the surface

t = 0

First faulting episode
Face AB exposed
Cosmogenic buildup in AB
Slower buildup in BC and CD

t = t1

Second faulting episode
Face BC exposed
Buildup continues in AB
Buildup starts in BC
Slower buildup in CD

t = t2

Third faulting episode
Face CD exposed
Buildup continues in AB, BC
Buildup starts in CD

t = t3

AB exposed from t1 till now
BC exposed from t2 till now
CD exposed from t3 till now

t = t\text{now}
Episodic exposure of fault scarp

Marek Zreda, 1999
Hebgen Lake area

Explanation:
- **Q**: Quaternary
- **M**: Mezoic
- **P**: Paleozoic
- **pC**: Precambrian
- **Red Canyon Fault**: 1959 surface rupture
- **SCARP**: surface rupture

Montana

Marek Zreda, 1999
Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes. This technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation. Twenty-seven samples collected every 0.5 m from the bottom (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 kyr (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 kyr (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago, and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, with a period of 15-20 kyr, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.

Marek Zreda, 1999
Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes at Hebgen Lake. The technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation.

Twenty-seven samples collected every 0.5 m from the bottom (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 ky (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 ky (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.
Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes at Hebgen Lake. The technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation.

Twenty-seven samples collected every 0.5 m from the bottom (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 ky (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.

Scarp - side view

Marek Zreda, 1999
Fault scarps along the Hebgen Lake fault, Montana, recorded multiple large paleoearthquakes, including the most recent earthquake in 1959. We used cosmogenic 36Cl in bedrock scarp faces exposed at the surface due to recurring faulting to determine ages of paleoearthquakes. The technique measures how long the different, episodically offset parts of the scarp have been exposed to cosmic radiation. Twenty-seven samples collected every 0.5 m from (0 m) to the top (12 m) of the scarp yielded the following exposure ages: 0.4 (for the 1959 scarp), 1.7, 2.6, 7.0, 20, 24 and 37 ky (maximum age). The data indicate two periods of heightened earthquake activity during which the displacement occurred: from 0 to 7 kyr ago and from 20 to 24 kyr ago, and two periods of quiescence: from 7 to 20 kyr and from 24 to 37 kyr. This temporal pattern suggests that the Hebgen Lake fault may be cyclic, with period of 15-20 kyr, presently in its active state. The average displacement rate during the two active periods is about 1 m/kyr, twice as high as that calculated over the entire geological history of the fault recorded in the scarp.
Apparent 36Cl ages

Scarp height (m)

Apparent 36Cl age (103 years)

Marek Zreda, 1999
Surface exposure ages

<table>
<thead>
<tr>
<th>Height [m]</th>
<th>Age [ky]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 - 11.4</td>
<td>23.8 ± 1.1</td>
</tr>
<tr>
<td>7.2 - 9.1</td>
<td>20.3 ± 1.0</td>
</tr>
<tr>
<td>5.1 - 7.2</td>
<td>7.0 ± 1.5</td>
</tr>
<tr>
<td>3.8 - 5.1</td>
<td>2.6 ± 0.3</td>
</tr>
<tr>
<td>2.6 - 3.8</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>0.5 - 2.6</td>
<td>0.4 ± 0.5</td>
</tr>
</tbody>
</table>

Marek Zreda, 1999
Corrected ^{36}Cl ages

Model age (10^3 years) vs. Scarp height (m)
Temporal clustering of earthquakes

![Graph showing temporal clustering of earthquakes with measured data, average rate, and piecewise average.](Marek Zreda, 1999)
<table>
<thead>
<tr>
<th>Time [ky]</th>
<th>Slip rate [m/ky]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>0 - 7.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0 - 20</td>
<td>0.45</td>
</tr>
<tr>
<td>0 - 24</td>
<td>0.5</td>
</tr>
<tr>
<td>0 - 37</td>
<td>0.33</td>
</tr>
<tr>
<td>7.0 - 20</td>
<td>0</td>
</tr>
<tr>
<td>20 - 24</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Vertical slip rates

Marek Zreda, 1999
Validity of 36Cl approach

- **Good chronology**
 - 36Cl ages follow predicted pattern
 - they are compatible with scarp degradation data

- **Reasonable displacement rates**
 - comparable to recent measurements

- **Clearly-defined clusters**
Advantages of 36Cl approach

- Can date previously undatable bedrock fault scarps
- Can obtain complete record of multiple earthquakes at single site
- Dating range: $10^3 - 10^{5.5}$ years
- Dating precision and accuracy: 10-20%
Conclusions

Cosmogenic 36Cl dating of bedrock fault scarps is feasible

At Hebgen Lake, earthquakes are clustered in two time intervals: 0-7 ky and 20-24 ky

During active periods vertical slip rate is 1-2 m/ky

Long-term vertical slip rate is 0.5 m/ky